Name

gf_model_get — Get information from a model object.

Calling Sequence

b=gf_model_get(md,'is_complex')
M=gf_model_get(md,'tangent_matrix')
V=gf_model_get(md,'rhs')
gf_model_get(md,'listvar')
gf_model_get(md,'listbricks')
size=gf_model_get(md,'memsize')
V=gf_model_get(md,'variable', string name[, int niter])
name=gf_model_get(md,'mult varname Dirichlet', int ind_brick)
V=gf_model_get(md,'from variables')
gf_model_get(md,'assembly'[, string option])
gf_model_get(md,'solve' [,...])
V = gf_model_get(md,'compute isotropic linearized Von Mises or Tresca', string varname, string dataname_lambda, string dataname_mu, mesh_fem mf_vm[, string version])
    

Description

  • b = gf_model_get(mds,'is_complex') Return 0 is the model is real, 1 if it is complex.

  • T = gf_model_get(mds,'tangent_matrix') Return the tangent matrix stored in the model .

  • gf_model_get(mds,'rhs') Return the right hand side of the tangent problem.

  • z = gf_model_get(mds,'memsize') Return a rough approximation of the amount of memory (in bytes) used by the model.

  • gf_model_get(mds,'listvar') print to the output the list of variables and constants of the model.

  • gf_model_get(mds,'listbricks') print to the output the list of bricks of the model.

  • V = gf_model_get(mds,'variable', string name[, int niter]) Gives the value of a variable or data.

  • name = gf_model_get(mds,'mult varname Dirichlet', int ind_brick) Gives the name of the multiplier variable for a Dirichlet brick. If the brick is not a Dirichlet condition with multiplier brick, this function has an undefined behavior

  • V = gf_model_get(mds,'from variables') Return the vector of all the degrees of freedom of the model consisting of the concatenation of the variables of the model (usefull to solve your problem with you own solver).

  • gf_model_get(mds,'assembly'[, string option]) Assembly of the tangent system taking into account the terms from all bricks. option, if specified, should be 'build all', 'build rhs' or 'build matrix'. The default is to build the whole tangent linear system (matrix and rhs). This function is usefull to solve your problem with you own solver.

  • gf_model_get(mds,'solve'[,...]) Run the standard getfem solver. Note that you should be able to use your own solver if you want (it is possible to obtain the tangent matrix and its right hand side with the gf_model_get(mds,'tangent matrix') etc.).

    Various options can be specified:

    • 'noisy' or 'very noisy' the solver will display some information showing the progress (residual values etc.).

    • 'max_iter', NIT set the maximum iterations numbers.

    • 'max_res', RES set the target residual value.

    • - 'lsolver', SOLVERNAME select explicitely the solver used for the linear systems (the default value is 'auto', which lets getfem choose itself). Possible values are 'superlu', 'mumps' (if supported), 'cg/ildlt', 'gmres/ilu' and 'gmres/ilut'.

  • V = gf_model_get(mds,'compute isotropic linearized Von Mises or Tresca', string varname, string dataname_lambda, string dataname_mu, MeshFem mf_vm[, string version]) Compute the Von-Mises stress or the Tresca stress of a field (only valid for isotropic linearized elasticity in 3D). `version` should be 'Von Mises' or 'Tresca' ('Von Mises' is the default).

See Also

gf_model, gf_model_set

Authors

Y. Collette